

Date: <u>2005.08.13</u>

Specifications for Approval

Customer :		:					
Model name : L		: LMG	LMG128641A-BMDSWW-NY REV: A				
Des	cription	: LIQI	JID CRYSRAL DISP	LAY MODULE			
				·			
	DE	SIGN	CHECK	APPROVED			
	Custome Approva		Accept Reject Comment:	roved by:			

LCM MODULE NUMBERING SYSTEM

PART NUMBER: LMAx.....yB-CDEFGHI-JK

L: LONDA TECHNOLOGY

M: MODULE

A: DISPLAY CONTENTS C--- CHARACTER TYPE

G--- GRAPHIC TYPE S---SEGMENT TYPE

x.....: CHARACTERS Vs. LINES FOR CM

COLUMNS Vs. ROWS FOR GM SERIALS NUMBER FOR SM

y: DISTRIBUTE ACCORDING TO SIZE

B: VERSION OF PCB

C: LCD TYPE:

Y---YELLOW STN G---GRAY STN B---BLUE STN

F---FSTN T---TN

D: POLARIZER TYPE:

R--- REFLECTIVE T--- TRANSFLECTIVE

M--- TRANSMISSIVE

E: VIEWING TEMPRETURE:

U--- 12:00 D--- 6:00 L--- 9:00 R--- 3:00

F: BACKLIGHT TYPE:

D---BOTTOM LED S---SIDE LED E--- EL C--- CCFL

N---NO BACKLIGHT

G: COLOR OF BACKLIGHT:

Y---YELLOW/GREEN G--- GREEN B--- BLUE

W--- WHITE O--- ORANGE A--- AMBER

H:OPERATING TEMPRETURE:

N--- NORMAL, W--- EXTENDED, X:ESPECIALLY EXTENDED

I: DENOTE DIFFERENT CHARACTER TABLE:

NORMAL ELLIPSIS, T--- TAB, G--- COG

-JK:

FOR CM:

J: IC TYPE: A--- KS0066U B--- SPLC780

K: CHARACTER STOREROOM SEQUENCE NUMBER

FOR GM:

J: BACKLIGHT DRIVER

Y--- WITH N--- WITHOUT

K: DC-DC CONVERTER

Y--- WITH N--- WITHOUT

- 1. FEATURES
- 2. MECHANICAL SPECIFICATIONS
- 3. ELECTICAL SPECIFICATIONS
- 4. POWER SUPPLY
- 5. ELECTRO-OPTICAL CHARACTERISTICS
- 6. TERMINAL FUNCTIONS AND BLOCK DIAGRAM
- 7. TIMING CHARACTERISTICS
- 8. INSTRUCTION SET
- 9. QUALITY SPECIFICATIONS
- 10. RELIABILITY
- 11. HANDLING PRECATION
- 12.OUTLINE DIMENSION

1 FEATURES

The features of LCD are as follows

* Display mode : STN, Negative. Transmissive

* Color : Display dot : White

Background: Blue

* Display format : 128 Dots X 64 Dots

* Interface Input Data: 8-Bit

* Driving Method : 1/64 Duty, 1/9 Bias

* Viewing Direction : 6 O'clock

* Backlight : LED Unit (White)

* Drive IC : Samsung KS0107/KS0108

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	93(W) x 70(H) x 14.0(T)	mm
Number of Dots	128(W) x 64(H) Dots	mm
Viewing Area	71.5(W) x 38.8(H)	mm
Effective display area	66.52(W) x 33.24(H)	mm
Dot Size	0.48(W) x 0.48(H)	mm
Dot Pitch	0.52(W) x 0.52(H)	mm

3. ELECTRICAL SPECIFICATIONS

3-1 ABSOLUTR MAZIMUM RATINGS (Ta = 25 °C)

Item	Symbol	Sta			
item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage For Logic	VDD - VSS	0	_	6.5	V
Supply Voltage For LCD Drive	V _{OP} = V _{DD} - V ₀	0	_	15	V
Input Voltage	V1	Vss	_	Vdd	V
Operating Temp.	Тор	-20	_	+70	°C *
Storage Temp.	Tst	-30	_	+80	°C

^{*.} NOTE: The response time will be extremely slow when the operating temperature is around -20°C, and the back ground will become darker at high temperature operating.

3-2 ELECTICAL CHARACTERISTICS

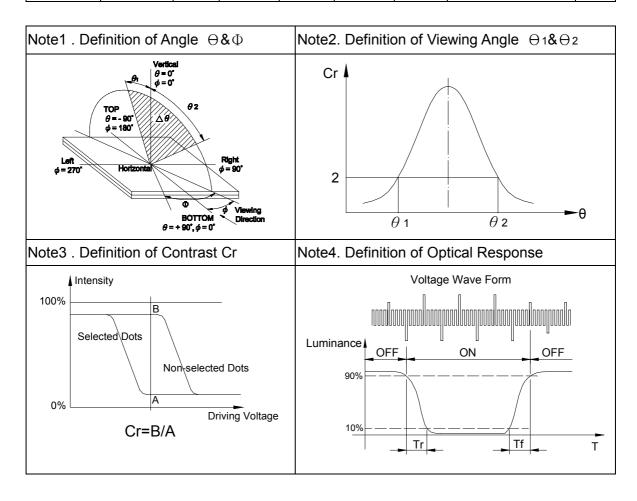
Item		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply \	/oltage	V _{DD} - V _{SS}		4.75	5.0	5.5	٧
LCD Drive		V _{OP} =V _{DD} - V ₀	-	-	13.1	-	V
	"H" Level	V IH	V _{DD} =5.0V ± 5%	0.8 VDD		VDD	V
Input Voltage	"L" Level	V IL		0		0.2Vdd	V
Frame Frequency		fFLM	VDD =5.0V	65	78	85	Hz
			VDD =5.0V				
Current Cons	umption	IDD	V _{DD} -V ₀ =13.1V V/R=160Kohm		1.60	3.0	mA

3-3. BACKLIGHT

3-3-1. Absolute Maximum Ratings

Item	Symbol	Condition	Min.	Тур.	Max	Unit
Forward Current	IF	- Ta= 25°∁	-	100	200	mA
Reverse Voltage	VR	1a- 25 (-	-	8	V
Power Dissipation	PD	Ta= 25°℃	-	-	320	mW

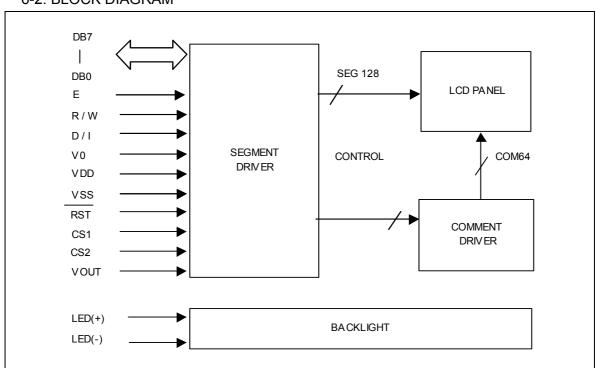
3-3-2. Opto-electronic Characteristics


ltem	Symbol	Condition	Min.	Тур.	Max	Unit
Forward Voltage	VF	Ta= 25°C	-	5.0	5.5	٧
Luminous	1	IF= 35mA	35	ı	ı	cd/m²

4. POWER SUPPLY

5. ELECTRO - OPTICAL CHARACTERISTICS

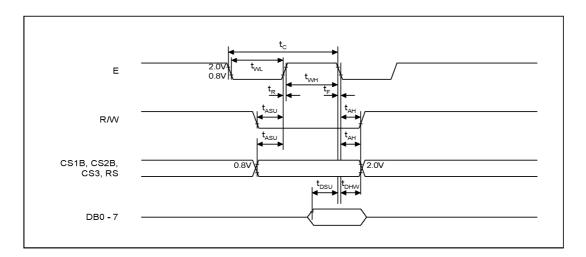
Item	Symbol	Temp.	Min.	Тур.	Max.	Unit	Conditions	Note
Viewing	⊖2−⊖1	25 ℃	30	80	-	Dog		4.0
Angle	Φ	250	60	85	-	Deg.	-	1,2
Contrast Ratio	Cr	25 ℃	2	5.3	5.9	-	⊕=0° ⊖=0°	3
Response	Т-	25 ℃	-	91	250		⊖=0°	4
Time(rise)	Tr	0℃	-	950	1150	ms	Ф =0 °	4
Response	Τf	25 ℃	-	151	250		⊖=0°	4
Time(fall)	Tf	0℃	-	950	1150	ms	Ф =0 °	4

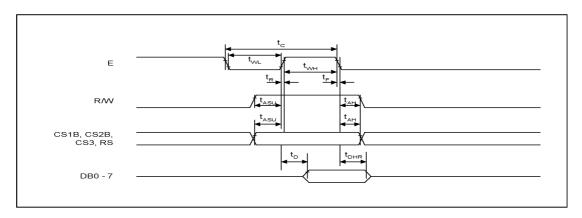


6. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

6-1. INTERFACE PIN FUNCTION DESCRIPTION

PIN NO.	SYMBOL	FUNCIONS
1	VSS	Ground
2	VDD	Power supply for logic circuit(5.0V)
3	V0	Operating voltage for LCD driving(Variable)
4	D/I	H :Data input ; L : Instruction code input
5	R/W	H: Data Read (LCM to MPU) ; L: Data Write (MPU to LCM)
6	Е	Enable
7 - 14	DB0-DB7	Data bus line
15	CS1	Chip Selection Signal for IC1
16	CS2	Chip Selection Signal for IC2
17	RST	Reset (Active "LOW")
18	VOUT	Output Votage for LCD Driving (No used)
19	LED (+)	Backlight (+) 5.0V
20	LED (-)	Backlight (-)


6-2. BLOCK DIAGRAM


MODEL LMG128641A-BMDSWW-NY	6/24	PRODUCT SPECIFICATIONS	REV:A
----------------------------	------	------------------------	-------

7. TIMING CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
E cycle	t _C	1000	-	-	ns
E high level width	t _{WH}	450	-	-	ns
E low level width	t _{WL}	450	-	-	ns
E rise time	t _R	-	-	25	ns
E fall time	t _F	-	-	25	ns
Address set-up time	t _{ASU}	140	-	-	ns
Address hold time	t _{AH}	10	-	-	ns
Data set-up time	t _{DSU}	200	-	-	ns
Data delay time	t _D	-	-	320	ns
Data hold time (write)	t _{DHW}	10	-	-	ns
Data hold time (read)	t _{DHR}	20	-	-	ns

MPU Write Timing

MPU Read Timing

8. INSTRUCTION SET

8-1. Function of Each Block

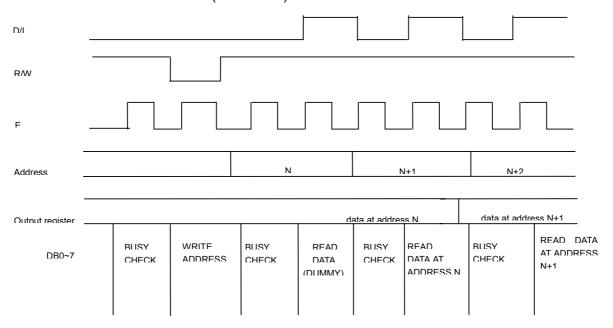
Both input register and output register are provided to interface with MPU of which The speed is different from that of internal operation. The selection of these registers Registers depend on the combination of R/W and D/I signals.

Table1. Register selection

D/I	R/W	Operation
1	1	Read data out of output register as internal operation (Display data RAM to output register)
1	0	Writes data into register as internal operation (Input register to display data RAM)
0	1	Busy check. Read of status data
0	0	Instruction

(1) Input Register

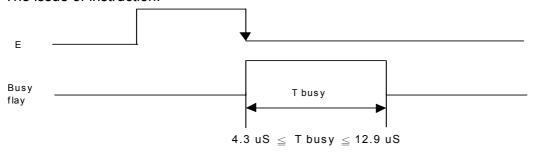
Input register is used to store Data temporarily before writing it into display data RAM. The data from MPU is written into input register, then into display data RAM Automatically by internal operation.


When chip select signal is in the active mode and D/I and R/W select the input Register as shown in table1, Data is latched at the fall of "E" signal.

(2) Output register

The output register is used to store data temporarily that is read from display data RAM. To read out the data from output register. Chip select signal should be in the Active mode and both D/I and R/W should be "1". With the read instruction, data stored in the output register is output while "E", the display data at the indicated address is latched into the output register and address is increased by 1. The contents in the output register is rewritten by read instructions, but are held by address set instruction, ect.

Therefore, the data of the specified address can not be output with read display Instruction, right after the address is set, but can be output at the second read of data. That is to say, on dummy read is necessary, Fig 8-1. Shows the CPU read timming.


8-1. Function of Each Block (Continued)

fia 8-1. CPU read timmina

8-1-2. Busy flag

"1" of busy flag indicates that KS0108B is on the move and any instruction except status read instruction can not be accepted the value of the busy flag is read out on DB7 by the status read instruction make sure that the busy flag is reset("0") before The issue of instruction.

8-1-3. Display on/off flip flop

Display on/off flip flop selects one of two states, on state and off state of segments, the Display data corresponding to that in RAM is output to the segments. On the other hand, The display data at all segments disappear in off state independent of ehte data in RAM. It is controlled by display on/off instruction "0" of RST signal sets the segments in off state, The status of the flip flop is output to DB5 by status read instruction. Display on/off Instruction does not inflence data in RAM.

8-1-4. Display start register

The register specifies A line in RAM which corresponds to the top line of LCD panel, When displaying contents in display data RAM on the LCD panel. It is used for scrolling Of the screen. 6-bit display start line information is written into this register by display Start the display, the information in this register is transferred to Z address, and the Z Address counter is preset.

8-1-5. X, Y address counter

This is 9 bit counter which designates address of internal display data RAM, X address Counter of upper 3 bits and Y address counter of lower 6 bits should be set each Address by respective instruction.

- X address counter
 Ordinary register with no count functions. An address is set in by instruction.
- (2). Y address counter

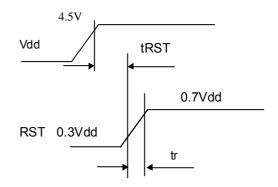
An address is set in by instruction and it is increased by 1 automatically by R/W Operations of display data. The address counter loops the value of 0 to 63 count.

8-1-6. Display data RAM

Dot data for display is stored in this RAM 1 bit data of this RAM corresponds to light on (data=1) and light off (data=0) of 1 dot in the display panel.

8-1-7. Reset

The system can initialized by setting RST terminal at "low" level when turning power on.


- (1) Display off
- (2) Set display start line register 0 line.

When RST is in low level, any instruction except status read can not be accepted, Therefore, carry out other instruction after making sure that DB4="0" (clear reset) And DB7="0" (ready) by status read instruction the conditions of power supply at Initial power up are as follows.

8-1-7. Reset (Continued)

Item	Symbol	Min.	Тур.	Max.	Unit
Reset time	tRST	1.0	_	_	uS
Rise time	tr	_	_	200	uS

Do not fail to set the system again because resetduring operation may destroy the data in all the register except on/off register and in RAM

8-2. Display control instructions

Table 2 shows the instructions. Read/write (R/W) signal, data instruction (D/I) sihnal and data bus signal (DB0 to DB7) are also called instructions because the internal operation depends on the signal from MPU generally, there are following three kinds of instructions.

- 1) Instruction to give address in the internal RAM
- 2) Instruction to transfer data from/to the internal RAM
- 3) Other instructions.

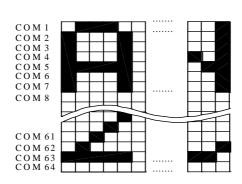
In general use, the instruction"2)" are used most frequently, but , since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be lessened, during the execution of an instruction, the system can not accept other instructions than status read instruction, send instruction from MPU after making sure if the busy flag is "0", which is the proof an instruction is not being executed.

Table 2

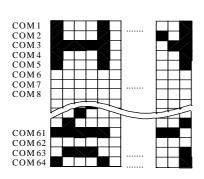
	D	R	D	D	D	D	D	D	D	D	
Function	/	/	В	D	В	В	В	В	В	В	Description
Function	' 	W	7	6	5	4	3	2	1	0	Description
Display On/Off	0	0	0	0	1	1	1	1	1	0/1	Controls the on/off display RAM data and internal status are not affected. 0: off; 1: on.
Set Address	0	0	0	1	Y	′ ad	dres	ss (() ~ (63)	Sets the Y address in the Y address counter.
Set Page (X address)	0	0	1	0	1	1	1	Pa	ige(0~7)	Sets the X address in the X address register.
Display Start Line	0	0	1	1	Dis	spla	y sta	rt lir	ne (0	~63)	Indicates the display data RAM Displayed at the top of the screen.
Status Line	0	1	B U S Y	0	N /	R E S E T	0	0	0	0	Read status: BUSY: 0: Ready 1: In operation ON/Off 0: Display ON 1: Display Off RESET 0: Normal 1: Reset
Write display Data	1	0			١	Vrit	e Da	ata			Writes data (DB0~7) into display Data RAM. After writing instruction, Y address is increased by 1 automatically.
Read display Data	1	1			F	Rea	d Da	ata			Reads data (DB0~7) into display data RAM to the data bus.

MODEL LMG128641A-BMDSWW-NY 12/24 PRODUCT SPECIFICATIONS	REV:A
---	-------

8-2-1. Display on/off


	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CODE	0	0	0	0	1	1	1	1	1	D

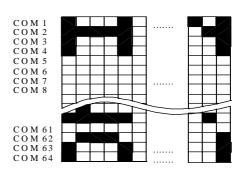
The display data appears when dis 1 and disappears when D is 0 Through the data is not on the screen whdth D = "0", it remains in the Display data RAM, there fore, you can make it appear by changing D = "0" into D = "1"


8-2-2. Display start line

	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CODE	0	0	1	1	Α	Α	Α	Α	Α	Α

Z address AAAAAA (binary) of the display data RAM is set at the Display start line register and displayed at the top of the screen fig. 8-2 Are the examples of display when the start line = $0 \sim 3$.

S tart line = 0



Start line = 2

COM 1
COM 2
COM 3
COM 4
COM 5
COM 6
COM 7
COM 8

COM 62
COM 63
COM 64

 $Start\ line\ =\ 1$

S tart line = 3

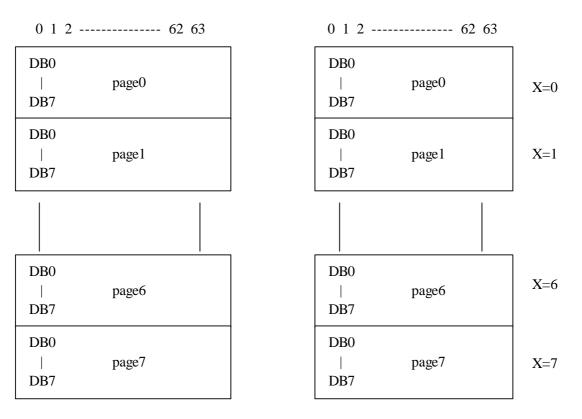
8-2-3. Set page (X address)

	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
CODE	0	0	1	0	1	1	1	Α	Α	Α	

X address AAA (binary) of the display data RAM is set at the

X address register. After that, writing or reading to or from MPU

Is executed in this specified page until the next page is set.


8-2-2. Set Y address

	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
CODE	0	0	0	1	Α	Α	Α	Α	Α	Α

Fig 8-2 Relation between start line and display Y address AAAAAA (binary) of the display data RAM is set at the

Address counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

Y address

IC1 (CS1 is Active)

IC2 (CS2 is Active)

8-2-5. Status read

	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
CODE	1	0	Busy	0	On/Off	Reset	0	0	0	0	

Busy: When "Busy" is "1". The LSI is in internal operation. On instructions are accepted while busy is "1". So you should make sure that busy is "0" before writing the next instruction.

On/Off : This bit shows the display conditions.

When On/Off is "1", the display is in off condition.

When On/Off is "0", the display is on condition.

Reset : Reset = "1" shows that the system is being initialized. In this condition, any instructions except status read instruction cannot be accepted.

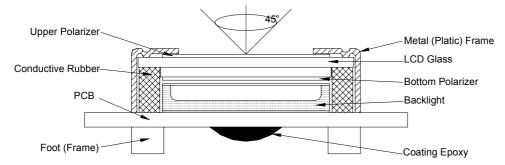
Reset = "0" shows that initializing has finished and the system is in the usual operation.

8-2-6. Write display data

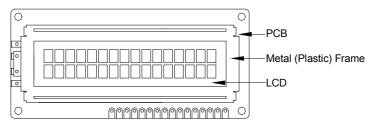
				DB6	_		_			_	
CODE	0	1	Α	Α	Α	Α	Α	Α	Α	Α	

Write 8-bit data AAAAAAA (binary) into the display data RAM then Y address is increased by 1 automatically.

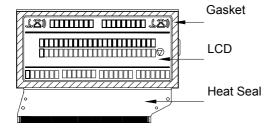
8-2-7. Write display data

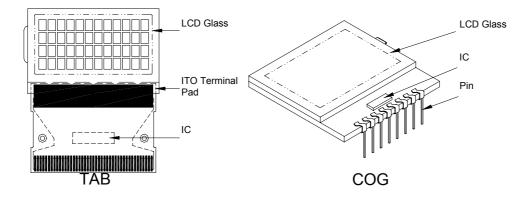

				_	_		_			DB0
CODE	1	1	Α	Α	Α	Α	Α	Α	Α	Α

Read out 8-bit data AAAAAAA (binary) from the display data RAM then Y address is increased by 1 automatically.


One dummy read is necessary soon after the address seting.

9. QUALITY SPECIFICATIONS


- 9 1. LCM Appearance and Electric inspection Condition
 - 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination.


- 2. View Angle: with in 45° around perpendicular line.
- 9 2. Definition
 - 1. COB

2. Heat Seal

3. TAB and COG

MODEL

9. QUALITY SPECIFICATIONS (Continued)

9-3. Sampling Plan and Acceptance

1.Sampling Plan

MIL - STD - 105E (\parallel) ordinary single inspection is used.

2. Acceptance

Major defect: AQL = 0.25%Minor defect: AQL = 0.65%

9-4. Criteria

1.COB

Defect	Inspection Item	Inspection Standards	
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject
Major	PCB cutting defect	Exceed the dimension of drawing	Reject

2.SMT

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing, extra, wrong component or wrong orientation		Reject
Minor	Component position shift component soldering pad X D Y	X < 3/4Z Y > 1/3D	Reject Reject
Minor	Component tilt component soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component PAD	<i>θ</i> ≤ 20°	Reject

9. QUALITY SECIFICATIONS (Continued)

9-4. Criteria (Continued)

3. Metal (Plastic) Frame

Defect	Inspection Item	lı	nspection Standar	rds		
Major	Crack / breakage	Any	where	Reject		
		W	L	Acceptable of Scratch		
		w<0.1mm	Any	Ignore		
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2		
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1		
		w <u>></u> 0.3mm	Any	0		
		Note: 1. Above criteria applicable to scratch lines with distance greater than 5mm. 2. Scratch on the back side of frame (not visible) can be ignored.				
		,		Acceptable of Dents / Pricks		
		Φ<	1.0mm	2		
	Frame Dent , Prick	1.0< ₫	> <u><</u> 1.5mm	1		
Minor	$\Phi = \frac{L + W}{2}$	1.5r	mm<⊕	0		
	2	Note: 1. Above criteria applicable to any two den / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (r visible) can be ignored				
Minor	Frame Deformation	Exceed the dimension of drawing				
Minor	Metal Frame Oxidation	Any rust				

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standards	
Minor	Tilted soldering	Within the angle +5°	Acceptable
Minor	Uneven solder joint /bump		Reject
Minor	Hole $\Phi = \frac{L + W}{2}$	Expose the conductive line	Reject
IVIII IOI	Ψ^{-} 2	Φ > 1.0mm	Reject
Minor	Position shift	Y > 1/3D	Reject
IVIIIIOI	- 	X > 1/2Z	Reject

MG128641A-BMDSWW-NY 18/24 PRODUCT SPECIFICATIONS REV:A
--

9. QUALITY SPECIFICATIONS (Continued)

9-4. Criteria (Continued)

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal . TCP . FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Ф> 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift	Y > 1/3D	Reject
IVIII IOI		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards	
		Acceptable number of units	
		Ф <u><</u> 0.10mm	Ignore
		0.10<⊕ <u><</u> 0.15mm	2
Minor	LED dirty, prick	0.15<⊕ <u><</u> 0.2mm	1
		Ф>0.2mm	0
		The distance between any two spots should be > Any spot/dot/void outside of viewing area is acce	
Minor	Protective film tilt	Not fully cover LCD	Reject
Major	COG coating	Not fully cover ITO circuit	Reject

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

MODEL LMG128641A-BMDSWW-NY	19/24	PRODUCT SPECIFICATIONS	REV:A
----------------------------	-------	------------------------	-------

9. QUALITY SPECIFICATIONS (Continued)

- 9-4. Criteria (Continued)
- 9. Inspection Specification of LCD

Defect	Insp	ect Item			Ins	pection	S	tandard	s	
		* Glass Scratch	W		W <u><</u>	0.03	0.0	0.0 <u><</u> W>0	5 V	V>0.05
		* Polarizer Scratch	L		L	<5		L<3		Any
Minor	Linear Defect	* Fiber and Linear	ACC. NO.			1		1		Reject
		material	Note	L is th	e ler	ngth and V	V is th	e width of	the de	efect
		* Foreign material	Φ	Φ≤	0.1	0.1<⊕ <u><</u> 0	0.15).15<⊕ <u><</u> 0	.2	⊕>0.2
	Black Spot and	between glass and polarizer or glass	ACC. NO.	3E/ 100n	A / nm²	2		1		0
Minor	Polarizer Pricked	and glass * Polarizer hole or protuberance by external force	Note					er of the de ects > 10n		
		* Unobvious	Φ		Φ <u><</u>	0.3	0.3	<⊕ <u><</u> 0.5	0.	5<⊕
	White Spot	transparant foreign material between	ACC. NO.	3E/	4/10	00mm ²		1		0
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass	Note	Distar	nce b	petween tw	vo def	er of the de ects > 10n	nm.	
			Φ	Φ <u><</u> 0	.10	0.10<Φ <u><</u>	<u><</u> 0.20	0.20<Φ <u><</u>	<u><</u> 0.25	Φ>0.25
		<u></u>	ACC. NO.	3E <i>A</i> 100m	\/ nm²	2		1		0
Minor	Segment Defect	1 - W ₁₋₁		W is r	nore	than 1/2	segme	ent width		Reject
	Boloot	W	Note	$\Psi = -$	_		vo def	ect is 10m	ım	
			Φ	Φ <u><</u> 0	.10	0.10<Φ <u><</u>	<u><</u> 0.20	0.20<Φ <u><</u>	<u><</u> 0.25	Φ>0.25
Minor	Protuberant Segment	w	W	Glu		W <u><</u> 1/2 W <u><</u> 0		W <u><</u> 1/2 W <u><</u> 0		Ignore
		Φ = (L + W) / 2	ACC. NO.	3E <i>A</i> 100m	\ nm²	2		1		0
			1. Seg	ment						
			E		_	<u>0.4mm</u>		3 <u><</u> 1.0mm		I.0mm
N Attack	Assembly		B-	A	B	A<1/2B	B	A<0.2	B-A	<0.25
Minor	Mis-alignment		Jud	-		ceptable	Acc	eptable	Acce	eptable
			2. Dot	Matrix						Г
				ormatio						Reject
Minor	Stain on LCD Panel Surface		or a	similar	one	e. Otherw	ise, ju	d lightly w udged aco /hite Spot"	cording	

DEL LMG128641A-BMDSWW-N	20/24 PRODUCT SPEC	IFICATIONS REV:A
-------------------------	--------------------	------------------

10. RELIABILITY

NO.	Item	Condition	Criterion
1	High Temperature Operating	70℃, 240Hrs	
2	Low Temperature Operating	- 2 0 °C, 240Hrs	
3	High Humidity	60°C, 90%RH, 96Hrs	
4	High Temperature Storage	80℃, 240Hrs	
5	Low Temperature Storage	-30°C, 240Hrs	No defect in cosmetic and operational
		Random wave	function allowable.
6	Vibration	10 ~ 100Hz	Total current Consumption should be below double of
	VIDIALIOII	Acceleration: 2g	initial value.
		2 Hrs per direction(X,Y,Z)	
		-30℃ to 25℃ to 80℃	
7	Thermal Shock	(60Min) (5Min) (60Min)	
		10Cycles	
	Contract Discharge Volt +1 ~ 5kV and –1 ~ –5kV		There will be
8	ESD Testing	. Six and 1 Six	discharged ten times at every discharging
		Air Discharge Voltage: +1 ~ 8kV and -1 ~ -8kV	

Note:

- 1) Above conditions are suitable for GOLDENTEK standard products.
- 2) For restrict products, the test conditions listed as above must be revised.

MODEL LMG128641A-BMDSWW-NY 21/24 PRODUCT SPECIFICATIONS REV

11. HANDLING PRECAUTION

(1) Mounting Method

The panel of the LCD Module consists of two thin glass plates with polarizers which easily get damaged since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(1) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Trichloro trifloro thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Ketone
- Aromatics

(3) Caution against static charge

The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.

(4) Packaging

- Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
- To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.

(5) Caution for operation

 It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shorten LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.

11. HANDLING PRECAUTION (Continued)

 Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them.

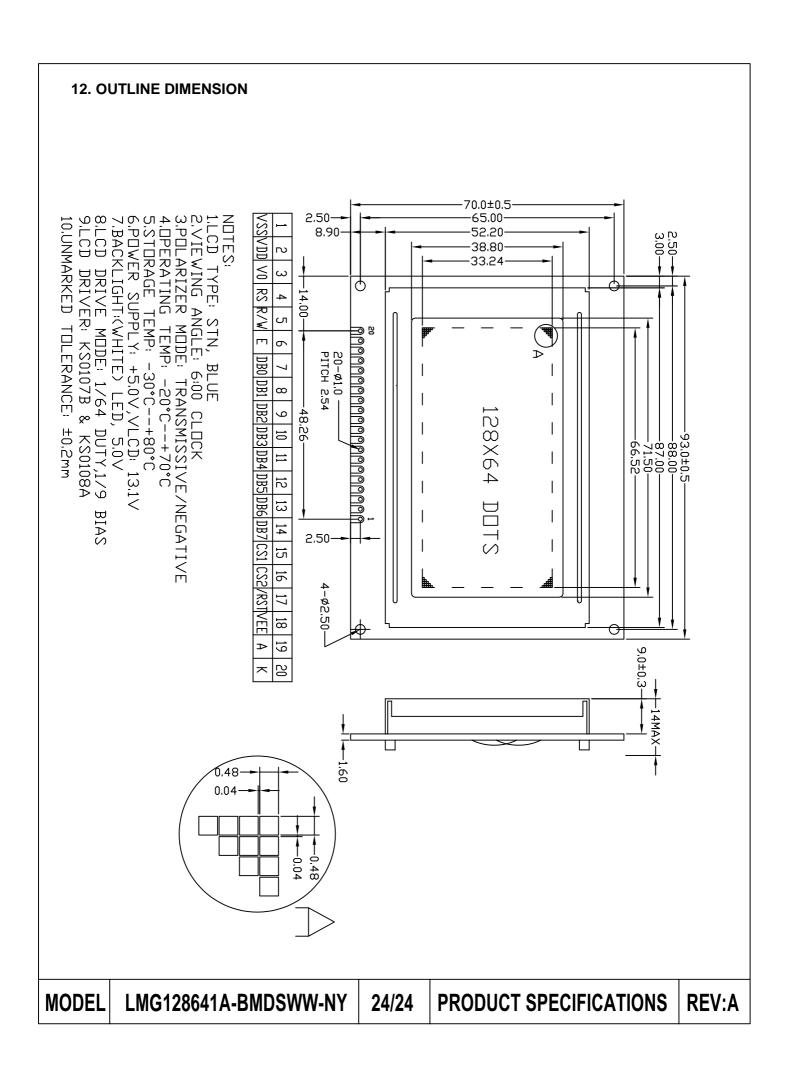
However those phenomena do not mean malfunction or out of order with LCD's. Which will come back in the specified operating temperature range.

- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is reequired.

(6) Storage

In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, The following ways are recommended.


- Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)

(7) Safety

- It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol.

Which should be burned up later.

- When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

